The vibrio pathogenicity island-encoded mop protein modulates the pathogenesis and reactogenicity of epidemic vibrio cholerae.
نویسندگان
چکیده
Epidemic Vibrio cholerae possess the VPI (Vibrio pathogenicity island) essential virulence gene cluster. The VPI is 41.2 kb in size and encodes 29 potential proteins, several of which have no known function. We show that the VPI-encoded Orf4 is a predicted 34-kDa periplasmic protein containing a zinc metalloprotease motif. V. cholerae seventh-pandemic (El Tor) strain N16961 carrying an orf4 mutation showed no obvious difference relative to its parent in the production of cholera toxin and the toxin-coregulated pilus, motility, azocasein digestion, and colonization of infant mice. However, analysis of rabbit ileal loops revealed that the N16961 orf4 mutant is hypervirulent, causing increased serosal hemorrhage and reactogenicity compared to its parent. Histology revealed a widening of submucosa, with an increase in inflammatory cells, diffuse lymphatic vessel dilatation, edema, endothelial cell hypertrophy of blood vessels, blunting of villi, and lacteal dilatation with lymphocytes and polymorphonuclear leukocytes. The mutant could be complemented in vivo with an orf4 gene on a plasmid but not with an orf4 gene containing a site-directed mutation in the putative zinc metalloprotease motif. Although its mechanism of its action is being studied further, our results suggest that the Orf4 protein is a zinc metalloprotease that modulates the pathogenesis and reactogenicity of epidemic V. cholerae. Based on our findings, we name this VPI-encoded protein Mop (for modulation of pathogenesis).
منابع مشابه
vttRA and vttRB Encode ToxR family proteins that mediate bile-induced expression of type three secretion system genes in a non-O1/non-O139 Vibrio cholerae strain.
Strain AM-19226 is a pathogenic non-O1/non-O139 serogroup Vibrio cholerae strain that does not encode the toxin-coregulated pilus or cholera toxin but instead causes disease using a type three secretion system (T3SS). Two genes within the T3SS pathogenicity island, herein named vttR(A) (locus tag A33_1664) and vttR(B) (locus tag A33_1675), are predicted to encode proteins that show similarity t...
متن کاملAnalysis of Clinical and Environmental Strains of Nontoxigenic Vibrio cholerae for Susceptibility to CTXF: Molecular Basis for Origination of New Strains with Epidemic Potential
Toxigenic Vibrio cholerae strains are lysogens of CTXF, a filamentous phage which encodes cholera toxin. The receptor for CTXF for invading V. cholerae cells is the toxin-coregulated pilus (TCP), the genes for which reside in a larger genetic element, the TCP pathogenicity island. We analyzed 146 CTX-negative strains of V. cholerae O1 or non-O1 isolated from patients or surface waters in five d...
متن کاملGenome sequence of the human pathogen Vibrio cholerae Amazonia.
Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis revealed that it contains Vibrio pathogenicity island 2 and a set of genes related to pathogenesis a...
متن کاملA Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains.
The bacterial species Vibrio cholerae includes harmless aquatic strains as well as strains capable of causing epidemics and global pandemics of cholera. While investigating the relationship between pathogenic and nonpathogenic strains, we identified a chromosomal pathogenicity island (PAI) that is present in epidemic and pandemic strains but absent from nonpathogenic strains. Initially, two Tox...
متن کاملCharacterization of VPI pathogenicity island and CTXphi prophage in environmental strains of Vibrio cholerae.
Environmental isolates of Vibrio cholerae of eight randomly amplified polymorphic DNA (RAPD) fingerprint types from Calcutta, India, that were unusual in containing toxin-coregulated pilus or cholera toxin genes but not O1 or O139 antigens of epidemic strains were studied by PCR and sequencing to gain insights into V. cholerae evolution. We found that each isolate contained a variant form of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 71 1 شماره
صفحات -
تاریخ انتشار 2003